Powered by dominiosweb.org  

               

Go to the site    Advertise here

 

 

 

Fibulin-6 expression and anoikis in human salivary gland epithelial cells: implications in Sjogren's syndrome. Sisto M, D'Amore M, Lofrumento DD, Scagliusi P, D'Amore S, Mitolo V, Lisi S. Int Immunol. 2009 Mar;21(3):303-11. Epub 2009 Feb 3.

Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy. m.sisto@anatomia.uniba.it

Important changes in acinar and ductal morphology and function, together with pronounced extracellular matrix (ECM) remodelling, are detectable in the labial salivary glands of Sjögren's syndrome (SS) patients. The objective of this work was to determine the effect of treatment with the anti-Ro/SSA auto-antibodies, characterizing SS, on the expression of fibulin-6, a member of the fibulins family of the ECM, in primary human salivary gland epithelial cell (SGEC) cultures established from biopsies of labial minor salivary glands obtained from healthy donors. The induction of cell detachment and anoikis in SGECs treated with anti-Ro/SSA auto-antibodies were also investigated. Changes in fibulin-6 mRNA expression were measured by semi-quantitative reverse transcriptase-PCR and real-time PCR. Fibulin-6 expression in cells treated with anti-Ro/SSA auto-antibodies was evaluated by flow cytometric analysis and confocal laser scanning microscopy. SGECs undergoing death by anoikis were identified and quantified using Calcein blue/YOPRO-1 dyes. Herein, we present the first evidence of fibulin-6 expression in SGEC that results distributed in the cytoplasm surrounding the inner side of the plasma membrane. Fibulin-6 was down-regulated in SGECs treated with anti-Ro/SSA auto-antibodies in which a marked cell detachment and a reduction of cell viability were observed. Notably, a reduction of fibulin-6 expression in SGECs treated with anti-Ro/SSA auto-antibodies corresponds to an increase of anoikis cell death. Our observations demonstrate a dysregulation of fibulin-6 in the pathological processes observed in SS and provide new evidence that disorganization of the ECM environment could damage the architecture and function of the salivary glands.